Муниципальное бюджетное учреждение дополнительного образования «Дом детского творчества»

СОГЛАСОВАНО педагогическим советом ДДТ протокол № 7 от 20.05.2025

УТВЕРЖДАЮ Директор МБУ ДО ДДТ И.Ю. Филиппова Приказ № 46/4-о от 21.05.2025

Дополнительная общеобразовательная общеразвивающая программа «Робототехника. LEGO Mindstorms. Углубленный уровень»

Возраст детей: 10-17 лет Срок реализации: 1 год

Объединение Программирование роботов. Углубленный уровень педагог дополнительного образования Сандуляк Данил Валерьевич

Паспорт программы

Название программы	Дополнительная общеобразовательная (общеразвивающая)
- Fire Fire Fire Fire Fire Fire Fire Fire	программа «Робототехника. LEGO Mindstorms. Углубленный уровень»
Краткое название	Программирование роботов. Углубленный уровень
Вид программы	Модифицированная
Уровень программы	Углубленный уровень
Направленность	Техническая
программы	
Вид деятельности	Робототехника, программирование.
Адаптирована для детей с OB3	Нет
Форма обучения	Очная
Наименование и	Федеральный закон от 29 декабря 2012 года № 273-ФЗ «Об
реквизиты федеральных	образовании в Российской Федерации»;
гос. требований	Приказ Министерства просвещения РФ от 27 июля 2022 г. № 629 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»; Методические рекомендации по проектированию дополнительных общеразвивающих программ № 09-3242 от 18.11.2015;
	Постановление Главного государственного санитарного врача РФ от 28.09.2020 № 28 «Об утверждении санитарных правил СП 2.4.3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи»; СанПиН 2.4.4.3172-14 «Санитарно-эпидемиологические требования к устройству, содержанию и организации режима работы образовательных организаций дополнительного образования детей».
Краткое описание	Программа углубленного уровня для продолжающих. Фокус на
	проектирование алгоритмов, освоение визуальных языков
	программирования (LabVIEW) для EV3, компьютерное зрение,
	системную инженерию и подготовку к соревнованиям высокого
	уровня. Обучающиеся создают автономных роботов для решения
	нестандартных задач.
Содержание программы	Программа решает задачи углубленной алгоритмизации, изучения ООП, работы с прецизионными механизмами и датчиками, разработки и отладки комплексных программных продуктов. Обучающиеся получат опыт полного цикла разработки робототехнической системы — от технического задания до конкурсной защиты.
Ключевые слова для	Робототехника, ІТ-технологии, программирование
поиска программы	
Цели и задачи	Цель: Формирование компетенций в области профессиональной разработки программного обеспечения для роботов и сложного инженерного проектирования. Задачи:
	- научить текстовому программированию микроконтроллеров EV3 на языке LabVIEW;
	- сформировать навыки разработки и отладки многофайловых проектов с использованием систем контроля версий (Git);

	- обучить созданию 3д моделей путем конструирования в специализированном ПО; - изучить продвинутые механические системы и принципы их точного расчета.							
Результат	Обучающиеся самостоятельно разработают и представят комплексный software проект: запрограммируют робота на визуальном языке программирования, Полученные навыки соответствуют полупрофессиональному уровню.							
Материальная база	Столы, стулья (по росту и количеству детей); технические средства обучения (ТСО) (мультимедийное устройство); презентации и учебные фильмы (по темам занятий); наборы LEGO Mindstorms EV3; программное обеспечение LEGO MINDSTORMS Education EV3. Дидактический материал: наглядно-демонстрационные материалы; технологические карты.							
Требования к состоянию здоровья Требуется наличие мед.	Требований нет He требуется							
справки для зачисления на программу								
Возрастной диапазон, лет	10-17 лет							
Число учащихся в группе	15 человек							
Способ оплаты	На бюджетной основе, по сертификату							
Значимый проект	«ІТ-куб»							
Учебный план	№ Название разделов, тем п/п	Всего	личество Теория	часов Практика				
	1 Проектирование робототехнических систем и основы.	16	б	10				
	2 Визуальное программирование микроконтроллеров на LabVIEW	28	8	20				
	3 Проектирование деталей и 3D- прототипирование	24	6	18				
	4 Компьютерное зрение для роботов	24	8	16				
	5 Разработка и отладка комплексных программных решений	28	8	20				
	6 Подготовка к соревнованиям и анализ регламентов	12	4	8				
	7 Защита итогового комплексного проекта	12	2	10				
Прополукитону мосту	Итого:	144	42	102				
Продолжительность Количество мест по программе	1 год 15							
Адрес реализации программы	171841, РФ, Тверская обл., г. Удомля, пр. К	Сурчато	ва, 8б					
Юридический адрес организации	171841, Тверская обл., г. Удомля, пр. Курча	атова, 1	7					

Раздел 1. Комплекс основных характеристик программы Пояснительная записка

Направленность - техническая

Адресат программы - дети от 10 до 17 лет. Наполняемость групп: 15 человек.

Уровень освоения – углубленный.

Нормативно- правовая основа программы:

- Федеральный закон от 29 декабря 2012 года № 273-ФЗ «Об образовании в Российской Федерации»;
- Приказ Министерства просвещения РФ от 27 июля 2022 г. № 629 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»;
- Методические рекомендации по проектированию дополнительных общеразвивающих программ № 09-3242 от 18.11.2015;
- Постановление Главного государственного санитарного врача РФ от 28.09.2020 № 28 «Об утверждении санитарных правил СП 2.4.3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи»;
- СанПиН 2.4.4.3172-14 «Санитарно-эпидемиологические требования к устройству, содержанию и организации режима работы образовательных организаций дополнительного образования детей».

Актуальность программы

В настоящее время владение компьютерными технологиями рассматривается как важнейший компонент образования, играющий значимую роль в решении приоритетных задач образования — в формировании целостного мировоззрения, системно-информационной картины мира, учебных и коммуникативных навыков. Данная программа решает задачи развивающего, мировоззренческого, технологического характера, здоровье сбережения. Обучающиеся получат представление о самобытности и оригинальности применения робототехники как вида искусства, как объектов для исследований.

Отличительная особенность

Является то, что она не только прививает навыки и умение работать с графическими программами, но и способствует формированию информационной, научно-технической и эстетической культуры. Эта программа не даёт ребёнку «уйти в виртуальный мир», учит видеть красоту и привлекательность реального мира. Отличительной особенностью является и использование нестандартных материалов при выполнении различных проектов.

Новизна программы

Последние годы одновременно с информатизацией общества лавинообразно расширяется применение микропроцессоров в качестве ключевых компонентов автономных устройств, взаимодействующих с окружающим миром без участия человека. Стремительно растущие коммуникационные возможности таких устройств, равно как и расширение информационных систем, позволяют говорить об изменении среды обитания человека.

Авторитетными группами международных экспертов область взаимосвязанных роботизированных систем признана приоритетной, несущей потенциал революционного технологического прорыва 1 и требующей адекватной реакции как в сфере науки, так и в сфере образования. В связи с активным внедрением новых технологий в жизнь общества постоянно увеличивается потребность в высококвалифицированных специалистах.

Между тем, игры в роботы, конструирование и изобретательство присущи подавляющему большинству современных детей. Таким образом, появилась возможность и назрела необходимость в непрерывном образовании в сфере робототехники.

Заполнить пробел между детскими увлечениями и серьезной ВУЗовской подготовкой позволяет изучение робототехники в школе на основе специальных образовательных конструкторов.

Педагогическая целесообразность

Педагогическая целесообразность программы объясняется тем, что рассчитана на дополнительное обучение на принципах доступности и результативности. Используются активные методы обучения и разнообразные формы.

Формы и технологии образования детей - конференция, фронтальная и индивидуальная беседа, выполнение дифференцированных практических заданий, участие в конкурсах и выставках технической направленности, защиты проектов и т.д.

Объем и срок освоения программы. Дополнительная общеобразовательная общеразвивающая программа «LEGO Mindstorms» рассчитана на 1 год обучения.

Режим занятий: 144 академических часа в год, 4 академических часа в неделю.

Занятия проходят в очной форме обучения два раза в неделю занятие по 2 академических часа (с перерывом не менее 10 минут).

Раздел 2. Обучение

Цель программы: обучение основам робототехники, программирования на базе конструктора Lego Mindstorms EV3.

Задачи:

Обучающие:

- познакомить обучающихся со спецификой работы над различными видами моделей роботов;
 - научить различным технологиям создания роботов, механизмов;
 - научить составлять программы для роботов различной сложности.

Развивающие:

- развивать мыслительные операции: анализ, синтез, обобщение, сравнение, конкретизация;
- развить у детей элементы изобретательности, технического мышления и творческой инициативы;
- ориентировать обучающихся на использование новейших технологий и методов организации практической деятельности в сфере моделирования;
 - развить способности программировать;

Воспитательные:

- воспитать высокую культуру труда обучающихся;
- воспитывать взаимоуважение друг к другу, эстетический вкус, бережное отношение к оборудованию и технике, дисциплинированность.

Программа основана на взаимосвязи процессов обучения, воспитания и развития обучающихся. Основными принципами работы по программе являются:

- принцип научности, который заключается в сообщении знаний об устройстве персонального компьютера, программах кодирования действий роботов и т.д., соответствующих современному состоянию науки;
- принцип доступности выражается в соответствии образовательного материала возрастным особенностям детей и подростков;
- принцип сознательности предусматривает заинтересованное, а не механическое усвоение воспитанниками знаний, умений и навыков;

- принцип наглядности выражается в демонстрации готовых моделей роботов и этапов создания моделей роботов различной сложности;
- принцип вариативности. Некоторые программные темы могут быть реализованы в различных видах технической деятельности, что способствует вариативному подходу к осмыслению этой или иной творческой задачи, исследовательской работы.

Содержание занятий дифференцировано, с учетом возрастных и индивидуальных особенностей детей и подростков. В программе предусмотрены условия для индивидуального творчества, а также для раннего личностного и профессионального самоопределения детей, их самореализации и саморазвития. Приведенный в программе перечень практических занятий является примерным и может быть изменен педагогом в зависимости от желаний, интересов обучающихся. Теоретические и практические занятия проводятся с использованием наглядного материала (технологические карты, разработки уроков, алгоритм выполнения задания, видеоуроки).

Адресат программы: дети от 10 до 17 лет.

Учебный план

No	Название разделов,]	Количество часо	ОВ	Формы контроля
Π/Π	тем	Всего	Теория	Практика	
1	Проектирование робототехнических систем и основы	16	6	10	Защита ТЗ проекта
1.2	Основы системного проектирования. Составление Т3.	6	2	4	Разработка ТЗ проекта
1.3	Инструменты управления проектами. Основы Git.	6	2	4	Создание репозитория проекта
1.4	Подготовка инструментария: LabVIEW, САПР.	4	2	2	Установка и настройка ПО
2	Визуальное программирование микроконтроллеров на LabVIEW	28	8	20	Защита мини- проектов
2.1	Интерфейс LabVIEW. Базовые структуры. ВПП.	10	3	7	Создание базовых программ
2.2	Работа с массивами и кластерами. ООП в LabVIEW.	10	3	7	Разработка сложных структур данных
2.3	Создание многопоточных приложений.	8	2	6	Наблюдение
3	Проектирование деталей и 3D- прототипирование	24	6	18	Защита проекта детали
3.1	Интерфейс САПР. Эскиз. Выдавливание. Вырез.	8	2	6	Создание параметрической детали

3.2	Проектирование	8	2	6	Моделирование
3.2	совместимых с LEGO	0	2	U	кастомного
	деталей.				крепления
3.3	Подготовка к печати.	8	2	6	Подготовка G-кода
3.3	Обзор технологий.	0	2	O	Подготовка О-кода
4	-	24	8	16	Помощетрония
4	Компьютерное	24	8	10	Демонстрация проекта
4.1	зрение для роботов	8	3	5	Написание
4.1	Основы работы с	0	3	3	фильтров
	изображением в LabVIEW.				фильтров
4.2		8	3	5	Пиотиона
4.2	Распознавание меток	8	3	3	Программа
1.2	и цветовых паттернов.	0	2		движения по метке
4.3	Интеграция Vision с	8	2	6	Проект «Робот-
_	модулями EV3.	20	0	20	следопыт»
5	Разработка и	28	8	20	Промежуточные
	отладка				отчеты
	комплексных				
	программных				
- 1	решений	10			
5.1	Разработка итогового	10	3	7	Техническое
	проекта.				задание
	Планирование.				
5.2	Создание и печать 3D-	8	2	6	Напечатанные
	деталей.				детали
5.3	Написание кода.	10	3	7	Рабочий прототип
	Интеграция модулей.				
6	Подготовка к	12	4	8	Презентация
	соревнованиям и				стратегии
	анализ регламентов				
6.1	Разбор регламентов	6	2	4	Анализ регламента
	WRO/FLL.				
6.2	Разработка стратегии	6	2	4	Презентация
	решения задач.				стратегии
7	Защита итогового	12	2	10	Публичная
	комплексного				защита
	проекта				
7.1	Финальная сборка и	6	1	5	Демонстрация
	отладка проекта.				работы
7.2	Подготовка	6	1	5	Публичное
	презентации и				выступление
	доклада.				
	ИТОГО:	144	42	102	

Содержание

Раздел 1. Проектирование робототехнических систем и основы

Тема 1.1 Основы системного проектирования. Составление ТЗ

Теория: Понятие робототехнической системы (РТС). Жизненный цикл проекта. Структура технического задания (цель, задачи, требования, критерии успеха). Методы постановки задач (SMART).

Практика: Анализ кейсов реальных РТС. Коллективная разработка технического задания для итогового группового проекта. Формулировка целей, задач и критериев оценки.

Тема 1.2 Инструменты управления проектами. Основы Git

Теория: Обзор методологий управления проектами (Agile, Scrum). Принципы системы контроля версий Git. Основные команды: clone, add, commit, push, pull. Понятие репозитория и веток.

Практика: Создание аккаунта на GitHub/GitLab. Инициализация репозитория для проекта. Выполнение основных операций: добавление файлов, коммиты, синхронизация с удаленным репозиторием. Ведение README.md.

Тема 1.3 Подготовка инструментария: LabVIEW, САПР

Теория: Обзор среды разработки LabVIEW: палитры функций, управление проектом, типы данных. Обзор САПР (Fusion 360/Tinkercad): интерфейс, основные инструменты эскизирования.

Практика: Установка и настройка необходимого ПО. Создание первого виртуального прибора (ВП) в LabVIEW. Создание простейшей эскизной детали в САПР.

Раздел 2. Визуальное программирование микроконтроллеров на LabVIEW

Тема 2.1 Интерфейс LabVIEW. Базовые структуры. ВПП

Теория: Архитектура LabVIEW: лицевая панель, блок-диаграмма, палитры элементов. Принцип работы "потоков данных". Базовые структуры: циклы While Loop, For Loop, условный оператор Case Structure.

Практика: Создание программ с использованием циклов и условий. Реализация простых алгоритмов управления мотором (включить/выключить по времени) с лицевой панели.

Тема 2.2 Работа с массивами и кластерами. ООП в LabVIEW

Теория: Понятие массивов и кластеров (структур) для группировки данных. Основы объектноориентированного программирования (ООП) в LabVIEW: классы, наследование, инкапсуляция.

Практика: Создание массивов данных с датчиков. Группировка параметров мотора (скорость, время, направление) в кластер. Создание простого класса "Двигатель" с методами управления.

Тема 2.3 Создание многопоточных приложений

Теория: Понятие многопоточности и параллельных процессов. Принципы организации независимых потоков выполнения в LabVIEW.

Практика: Разработка программы с независимыми потоками: управление движением по линии и обработка данных с ультразвукового датчика для объезда препятствий одновременно.

Раздел 3. Проектирование деталей и 3D-прототипирование

Тема 3.1 Интерфейс САПР. Эскиз. Выдавливание. Вырез

Теория: Основы эскизирования: привязки, размеры, constraints. Операции создания объемных тел: выдавливание (Extrude), вырез (Cut), вращение (Revolve).

Практика: Создание простых деталей (брусок, кронштейн). Моделирование детали с заданными размерами по чертежу.

Тема 3.2 Проектирование совместимых с LEGO деталей

Теория: Изучение стандарта LEGO Technic: размеры отверстий, шаг балок, посадочные места для осей и штифтов. Принципы параметрического моделирования.

Практика: Создание собственной балки с отверстиями. Моделирование специализированного крепления для датчика или мотора, совместимого с конструктором LEGO.

Тема 3.3 Подготовка к печати. Обзор технологий

Теория: Обзор технологий 3D-печати (FDM, SLA). Понятие слайсинга: настройка слоев, заполнения, поддержек. Калибровка 3D-принтера.

Практика: Экспорт модели в формат STL. Настройка слайсера (Cura/PrusaSlicer) для печати созданной детали. Анализ и устранение ошибок модели для успешной печати.

Раздел 4. Компьютерное зрение для роботов

Тема 4.1 Основы работы с изображением в LabVIEW

Теория: Подключение камеры. Основы обработки изображений: цветовые пространства (RGB, HSV), фильтрация (размытие, пороговая обработка), морфологические операции.

Практика: Написание ВП для захвата видео с камеры. Создание программы, выделяющей объект заданного цвета на монотонном фоне.

Тема 4.2 Распознавание меток и цветовых паттернов

Теория: Методы распознавания образов. Работа с Aruco-маркерами. Алгоритмы поиска контуров и вычисления центра масс объекта.

Практика: Создание программы для распознавания Aruco-маркеров и определения их позиции и ориентации относительно камеры. Программа движения робота к маркеру.

Tema 4.3 Интеграция Vision с модулями EV3

Теория: Передача данных от модуля Vision к модулю управления роботом. Создание архитектуры "Зрение -> Принятие решения -> Действие".

Практика: Разработка комплексного проекта "Робот-следопыт": робот с камерой ищет объект определенного цвета, подъезжает к нему и выполняет действие (например, толкает).

Раздел 5. Разработка и отладка комплексных программных решений

Тема 5.1 Разработка итогового проекта. Планирование

Теория: Методы декомпозиции сложной задачи на подзадачи. Распределение ролей в команде (конструктор, программист Vision, программист управления). Планирование по времени (Gantt-диаграммы).

Практика: Формирование команд. Выбор и утверждение темы итогового проекта. Составление детального плана работы, распределение зон ответственности.

Тема 5.2 Создание и печать 3D-деталей

Теория: Принципы оптимизации модели для печати: минимизация поддержек, выбор ориентации, прочность конструкции.

Практика: Моделирование, слайсинг и печать всех необходимых для проекта кастомных деталей. Пост-обработка напечатанных деталей (удаление поддержек, шлифовка).

Тема 5.3 Написание кода. Интеграция модулей

Теория: Принципы интеграционного тестирования. Отладка программ: использование индикаторов, трассировка данных, пошаговое выполнение.

Практика: Написание кода для каждого модуля проекта. Поэтапная сборка и отладка всей системы. Проведение испытаний и циклов тестирование-доработка.

Раздел 6. Подготовка к соревнованиям и анализ регламентов

Тема 6.1 Разбор регламентов WRO/FLL

Теория: Структура регламентов робототехнических соревнований. Анализ правил, ограничений и системы начисления очков. Разбор прошлогодних заданий.

Практика: Выбор одного из актуальных регламентов. Его детальный разбор, выделение ключевых задач и "подводных камней".

Тема 6.2 Разработка стратегии решения задач

Теория: Тактика прохождения трассы: надежность vs скорость. Выбор между простыми и сложными алгоритмами. Планирование запасных вариантов.

Практика: Мозговой штурм и разработка нескольких стратегий решения выбранной конкурсной задачи. Обоснование выбора оптимальной стратегии.

Раздел 7. Защита итогового комплексного проекта

Тема 7.1 Финальная сборка и отладка проекта

Теория: Принципы проведения приемочных испытаний. Составление чек-листа для проверки всех функций проекта.

Практика: Окончательная сборка робота, установка всех напечатанных деталей. Проведение финальных тестовых заездов в условиях, максимально приближенных к конкурсным.

Тема 7.2 Подготовка презентации и доклада

Теория: Структура презентации проекта: актуальность, цель, задачи, реализация, результаты, выводы. Искусство публичного выступления.

Практика: Подготовка презентационных материалов: слайды, видеодемонстрация работы проекта. Составление текста выступления и распределение ролей в команде для защиты. Репетиция защиты.

Планируемые результаты

К концу реализации программы обучающиеся будут знать:

- принципы системного проектирования робототехнических комплексов и составления технических заданий;
 - основы работы в средах визуального программирования LabVIEW и CAПР;
 - технологии 3D-моделирования и прототипирования;
 - методы обработки изображений и компьютерного зрения;
 - регламенты основных робототехнических соревнований (WRO, FLL);
 - современные инструменты управления проектами и контроля версий (Git);
 - терминологию в области профессиональной робототехники и программирования.

К концу реализации программы обучающиеся будут уметь:

- разрабатывать техническое задание на проект и планировать этапы его реализации;
- программировать микроконтроллеры EV3 с использованием среды LabVIEW;
- создавать 3D-модели деталей и подготавливать их для печати на 3D-принтере;
- реализовывать алгоритмы компьютерного зрения для навигации и распознавания объектов;
- интегрировать программные и аппаратные компоненты в комплексные робототехнические системы;
 - работать в команде и распределять задачи между участниками проекта;
 - публично представлять и защищать результаты своей работы.

К концу реализации программы обучающиеся будут иметь представление:

- о полном цикле разработки робототехнических систем от идеи до реализации;
- о современных тенденциях в робототехнике и системах искусственного интеллекта;
- о принципах работы промышленных систем автоматизации и управления;
- о возможностях профессионального роста в области робототехники и IT;
- о требованиях к инженерным специальностям в современном технологическом мире;
- о возможностях участия в российских и международных робототехнических соревнованиях;
 - о перспективах развития робототехники и смежных технологических направлений.

Формы контроля, аттестации

Срок проведения: сентябрь

Цель: исследования имеющихся навыков и умений у учащихся.

Форма проведения: собеседование, тестирование, практическое задание.

Форма оценки: уровень (высокий, средний, низкий).

Критерии оценки уровня: положительный или отрицательный ответ.

Таблина 4

	Параметры	Критерии оценки					
	оценки	Высокий уровень	Средний уровень	Низкий уровень			
1.	Умение выставлять	Соблюдение всех	Допущены единичные	Несоблюдение			
	программные блоки	технологических	нарушения технологии	технологии			
	без инструкций	приемов в работе					
2.	Умение отбирать и	Соблюдение всех	Допущены единичные	Несоблюдение			
	устанавливать	технологических	нарушения технологии	технологии			
	программные	приемов в работе					
	датчики						

3.	Владение техникой	Соблюдение всех	Допущены единичные	Несоблюдение
	конструирования	технологических	нарушения технологии	технологии
		приемов в работе		

Промежуточная аттестация

Срок проведения: декабрь, май.

Цель: оценка роста качества знаний и практического их применения за период обучения.

Форма проведения: практическое задание, контрольное занятие, отчетные мероприятия (соревнования, конкурсы и т.д.).

Содержание аттестации. Сравнительный анализ качества выполненных работ начала и конца учебного года (выявление уровня знаний и применения их на практике).

Форма оценки: уровень (высокий, средний, низкий).

Таблица 5

$N_{\underline{0}}$	Параметры оценки	Критерии оценки				
Π/Π		Высокий уровень	Средний уровень	Низкий уровень		
1.	Умение построить	Соблюдение всех	Допущены единичные	Несоблюдение		
	индивидуальный	технологических	нарушения технологии	технологии		
	программный код	приемов в работе				
2.	Укажите точное название	Соблюдение всех	Допущены единичные	Несоблюдение		
	и предназначение	технологических	нарушения технологии	технологии		
	программных блоков	приемов в работе				
3.	Алгоритмы управления	Соблюдение всех	Допущены единичные	Несоблюдение		
		технологических	нарушения технологии	технологии		
		приемов в работе				

Раздел 3. Воспитание

Главной целью воспитания является развитие личности, самоопределение и социализация детей на основе социокультурных, духовно-нравственных ценностей и принятых в российском обществе правил и норм поведения в интересах человека, семьи, общества и государства, формирование чувства патриотизма, гражданственности, уважения к памяти защитников Отечества и подвигам Героев Отечества, закону и правопорядку, человеку труда и старшему поколению; взаимного уважения; бережного отношения к культурному наследию и традициям многонационального народа Российской Федерации, природе и окружающей среде (Федеральный закон от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации», ст. 2, п. 2).

Задачи воспитания детей заключаются в усвоении ими знаний норм, духовнонравственных ценностей, традиций, которые выработало российское общество (социально значимых знаний); формировании и развитии личностных отношений к этим нормам, ценностям, традициям (их освоение, принятие); приобретении соответствующего этим нормам, ценностям, традициям социокультурного опыта поведения, общения, межличностных и социальных отношений, применения полученных знаний.

Формы воспитания

В ходе учебных занятий в соответствии с предметным и метапредметным содержанием программ обучающиеся: усваивают информацию, имеющую воспитательное значение; получают опыт деятельности, в которой формируются, проявляются и утверждаются ценностные, нравственные ориентации; участвуют в освоении и формировании среды своего личностного развития, творческой самореализации.

Получение информации об открытиях, изобретениях, достижениях в науке, об исторических событиях; изучение биографий деятелей российской и мировой науки — источник формирования у детей сферы интересов, личностных позиций и норм поведения.

Практические занятия детей (конструирование, подготовка к конкурсам, выставкам, участие в коллективных творческих делах и проч.) способствуют формированию позитивного и конструктивного отношения к событиям, в которых они участвуют, к членам своего коллектива. Участие в проектах и исследованиях способствует формированию умений в области целеполагания, планирования и рефлексии, укрепляет внутреннюю дисциплину, даёт опыт долгосрочной системной деятельности. В коллективных играх проявляются и развиваются личностные качества: эмоциональность, активность, нацеленность на успех, готовность к командной деятельности и взаимопомощи.

Итоговые мероприятия: конкурсы, выставки, презентации проектов — способствуют закреплению ситуации успеха, развивают рефлексивные и коммуникативные умения, ответственность, благоприятно воздействуют на эмоциональную сферу детей.

Календарный план воспитательной работы

№ п/п	Мероприятие	Время про	ведения
1.	Беседа о противопожарной безопасности	Октябрь	Январь
2.	Беседа о здоровом образе жизни. «Скажи наркомании — «Нет», Курение в детском и подростковом возрасте. Вредные привычки как от них избавиться.	Ноябрь	Февраль
3.	Беседы о бережном отношении и экономном расходовании материалов	Декабрь	Апрель
4.	Проведение мероприятий с презентацией творческого объединения (День знаний; День защиты детей)	Сентябрь	Май
5.	Воспитание патриотических чувств (беседы: День народного единства; День защитника Отечества; День Победы в Великой Отечественной войне 1941-1945 гг.; Международный женский день 8 марта; День России)	Ноябрь/ Декабрь	Февраль/ Март/ Май

Планируемые результаты воспитания

Анализ результатов воспитания по программе не предусматривает определение персонифицированного уровня воспитанности, развития качеств личности конкретного ребёнка, обучающегося, а получение общего представления о воспитательных результатах реализации программы, продвижения в достижении определённых в программе целевых ориентиров воспитания, влияния реализации программы на коллектив обучающихся: что 22 удалось достичь, а что является предметом воспитательной работы в будущем. Результаты, полученные в ходе оценочных процедур — опросов, интервью — используются только в виде агрегированных усреднённых и анонимных данных.

Раздел 4. Условия реализации программы

Особенности организации образовательного процесса заключаются в том, что помимо освоения этапов разработки и создания робототехнических систем, уделяется время на подготовку к соревнованиям, чему способствует организация деятельности малыми группами и индивидуальная.

В процессе реализации программы также используются современные образовательные технологии, а именно применение технологии проектного обучения при подготовке индивидуального творческого проекта.

Технология развивающего обучения используется на протяжении всего курса как активнодеятельностный тип обучения. Проектное обучение стимулирует и усиливает обучение со стороны учащихся, поскольку является личностно-ориентированным; самомотивируемым, что означает возрастание интереса и включения в работу по мере ее выполнения, позволяет учиться на собственном опыте и опыте других непосредственно в конкретном деле; приносит удовлетворение обучающимся, видящим продукт своего собственного труда.

Таким образом, проектные технологии значительно увеличивают интерес обучающихся как к отдельным областям знаний, так и к образованию в целом.

Методы обучения

- Объяснительно-иллюстративный предъявление информации различными способами (объяснение, рассказ, беседа, инструктаж, демонстрация, работа с технологическими картами и др.).
 - Проблемный постановка проблемы и самостоятельный поиск её решения обучающимися.
- Репродуктивный воспроизводство знаний и способов деятельности (форма: собирание моделей и конструкций по образцу, беседа, упражнения по аналогу).
 - Поисковый самостоятельное решение проблем.
- Метод проблемного изложения постановка проблемы педагогам, решение ее самим педагогом, соучастие обучающихся при решении.
- Метод проектов технология организации образовательных ситуаций, в которых обучающийся ставит и решает собственные задачи, технология сопровождения самостоятельной деятельности обучающегося.

Для оценки результативности обучения и воспитания регулярно используются разнообразные методы: наблюдение за деятельностью; метод экспертной оценки преподавателем. Данные методы используются при анализе деятельности обучающихся, при организации текущей, промежуточной и итоговой аттестации обучающихся.

Формы и алгоритм организации учебного занятия

Методы, в основе которых лежит форма организации деятельности обучающихся на занятиях: — фронтальный — одновременная работа со всеми обучающимися; — индивидуальнофронтальный — чередование индивидуальных и фронтальных форм работы; — групповой — организация работы в группах; — индивидуальный — индивидуальное выполнение заданий, решение проблем. Каждое занятие по темам программы включает теоретическую часть и практическое выполнение задания. Теоретические сведения — это повтор пройденного материала, объяснение нового, информация познавательного характера. Теория сопровождается показом наглядного материала.

Календарный учебный график

Год	Название раздела,	Дата	Дата	Количество учебных		ебных	Режим занятий, их
обуче	модуля, темы	начала	окончания	недель	дней	часов	периодичность и
ния		занятий	занятий				продолжительность
1	Проектирование	01.09.2025	31.05.2026	36	72	144	2 раза в неделю,
	робототехническ						2 занятия по 45 мин.,
	их систем и						перерыв 10 мин.
	основы.						
1	Визуальное	01.09.2025	31.05.2026	36	72	144	2 раза в неделю,
	программирован						2 занятия по 45 мин.,
	ие						перерыв 10 мин.
	микроконтролле						
	ров на LabVIEW						
1	Проектирование	01.09.2025	31.05.2026	36	72	144	2 раза в неделю,
	деталей и 3D-						

	прототипирован ие						2 занятия по 45 мин., перерыв 10 мин.
1	Компьютерное зрение для роботов	01.09.2025	31.05.2026	36	72	144	2 раза в неделю, 2 занятия по 45 мин., перерыв 10 мин.
1	Разработка и отладка комплексных программных решений	01.09.2025	31.05.2026	36	72	144	2 раза в неделю, 2 занятия по 45 мин., перерыв 10 мин.
1	Подготовка к соревнованиям и анализ регламентов	01.09.2025	31.05.2026	36	72	144	2 раза в неделю, 2 занятия по 45 мин., перерыв 10 мин.
1	Защита итогового комплексного проекта	01.09.2025	31.05.2026	36	72	144	2 раза в неделю, 2 занятия по 45 мин., перерыв 10 мин.

Дидактические и методические материалы

Дидактический материал:

- наглядно-демонстрационные материалы;
- технологические карты.

Методические материалы

Реализация программы предполагает наличие определенной структуры организации деятельности: набор детей 10 - 17 лет в группу проводится ежегодно с мая по сентябрь. Состав группы: 15 обучающихся.

Занятия проходят в очной форме обучения два раза в неделю занятие по 2 академических часа (с перерывом не менее 10 минут).

Формы организации деятельности

- Занятия коллективные, индивидуально-групповые.
- Индивидуальная работа детей, предполагающая самостоятельный поиск различных ресурсов для решения задач.
 - Участие в выставках, конкурсах, соревнованиях различного уровня.

Материально-техническое обеспечение

Требования к помещению:

- помещение для занятий, отвечающие требованиям СанПин для учреждений дополнительного образования;
 - качественное освещение;
 - столы, стулья по количеству учащихся и 1 рабочим местом для педагога.

Оборудование:

- столы, стулья (по росту и количеству детей);
- технические средства обучения (ТСО) (мультимедийное устройство);
- презентации и учебные фильмы (по темам занятий);
- наборы LEGO Mindstorms EV3;
- программное обеспечение LEGO MINDSTORMS Education EV3.

Кадровое обеспечение:

Реализовывать программу могут педагоги дополнительного образования, обладающие достаточными знаниями в области педагогики, психологии и методологии, знающие особенности обучения робототехники, знакомые с машинным обучением, технологией нейронных сетей и больших данных.

Список литературы

- 1. Овсяницкая Л.Ю. Курс программирования робота Lego Mindstorms EV3 в среде EV3: изд. второе, перераб. и допол. / Л.Ю. Овсяницкая, Д.Н. Овсяницкий, А.Д. Овсяницкий. М.: «Перо», $2016.-300~\rm c.$
- 2. Вязовов С.М., Калягина О.Ю., Слезин К.А. Соревновательная робототехника: приемы программирования в среде EV3: учебно-практическое пособие. -М.: Издательство «Перо», 2014. 132 с.
 - 3. Филиппов С.А. Робототехника для детей и родителей. –СПб.: Наука, 2013. 319 с.